Electron Hopping through Double-Exchange Coupling in a Mixed-Valence Diiminobenzoquinone-Bridged Fe2 Complex.
نویسندگان
چکیده
The ability of a benzoquinonoid bridging ligand to mediate double-exchange coupling in a mixed-valence Fe2 complex is demonstrated. Metalation of the bridging ligand 2,5-di(2,6-dimethylanilino)-3,6-dibromo-1,4-benzoquinone (LH2) with Fe(II) in the presence of the capping ligand tris((6-methyl-2-pyridyl)methyl)amine (Me3TPyA) affords the dinuclear complex [(Me3TPyA)2Fe(II)2(L)](2+). The dc magnetic measurements, in conjunction with X-ray diffraction and Mössbauer spectroscopy, reveal the presence of weak ferromagnetic superexchange coupling between Fe(II) centers through the diamagnetic bridging ligand to give an S = 4 ground state. The ac magnetic susceptibility measurements, collected in a small dc field, show this complex to behave as a single-molecule magnet with a relaxation barrier of U(eff) = 14(1) cm(-1). The slow magnetic relaxation in the Fe(II)2 complex can be switched off through one-electron oxidation to the mixed-valence congener [(Me3TPyA)2Fe2(L)](3+), where X-ray diffraction and Mössbauer spectroscopy indicate a metal-centered oxidation. The dc magnetic measurements show an S = 9/2 ground state for the mixed-valence complex, stemming from strong ferromagnetic exchange coupling that is best described considering electron hopping through a double-exchange coupling mechanism, with a double-exchange parameter of B = 69(4) cm(-1). In accordance with double-exchange, an intense feature is observed in the near-infrared region and is assigned as an intervalence charge-transfer band. The rate of intervalence electron hopping is comparable to that of the Mössbauer time scale, such that variable-temperature Mössbauer spectra reveal a thermally activated transition from a valence-trapped to detrapped state and provide an activation energy for electron hopping of 63(8) cm(-1). These results demonstrate the ability of quinonoid ligands to mediate electron hopping between high-spin metal centers, by providing the first example of an Fe complex that exhibits double-exchange through an organic bridging ligand and the largest metal-metal separation yet observed in any metal complex with double-exchange coupling.
منابع مشابه
An azophenine radical-bridged Fe2 single-molecule magnet with record magnetic exchange coupling.
One-electron reduction of the complex [(TPyA)2Fe(II)2((NPh)L(2-))](2+) (TPyA = tris(2-pyridylmethyl)amine, (NPh)LH2 = azophenine = N,N',N",N'''-tetraphenyl-2,5-diamino-1,4-diiminobenzoquinone) affords the complex [(TPyA)2Fe(II)2((NPh)L(3-•))](+). X-ray diffraction and Mössbauer spectroscopy confirm that the reduction occurs on (NPh)L(2-) to give an S = 1/2 radical bridging ligand. Dc magnetic s...
متن کاملThrough-bond versus through-space coupling in mixed-valence molecules: observation of electron localization at the single-molecule scale.
Scanning tunneling microscopy (STM) is used to study two dinuclear organometallic molecules, meta-Fe2 and para-Fe2, which have identical molecular formulas but differ in the geometry in which the metal centers are linked through a central phenyl ring. Both molecules show symmetric electron density when imaged with STM under ultrahigh-vacuum conditions at 77 K. Chemical oxidation of these molecu...
متن کاملHigh-spin ground states via electron delocalization in mixed-valence imidazolate-bridged divanadium complexes.
The field of molecular magnetism has grown tremendously since the discovery of single-molecule magnets, but it remains centred around the superexchange mechanism. The possibility of instead using a double-exchange mechanism (based on electron delocalization rather than Heisenberg exchange through a non-magnetic bridge) presents a tantalizing prospect for synthesizing molecules with high-spin gr...
متن کاملInitial iron oxidation in horse spleen apoferritin. Characterization of a mixed-valence iron(II)-iron(III) complex.
In ferritin, iron is stored by oxidative deposition of the ferrous ion to form a hydrous ferric oxide mineral core. Two intermediates, formed during the initial stages of iron accumulation in apoferritin, have been observed previously in our laboratory and have been identified as a mononuclear Fe3(+)-protein complex and a mixed-valence Fe2(+)-Fe3(+)-protein complex. The physical characteristics...
متن کاملDetermination of antiferromagnetic exchange coupling in the tetrahedral thiolate-bridged diferrous complex [Fe2(SEt)6]2-.
Protein-bound iron-sulfur clusters and their synthetic analogues are characterized by tetrahedral metal sites, multiple oxidation levels, and exchange coupling. The recent attainment of several all-ferrous protein clusters and the presence of sulfide- and thiolate-bridged sites in the all-ferrous state of the nitrogenase P-cluster provides an imperative for determination of exchange coupling be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 137 39 شماره
صفحات -
تاریخ انتشار 2015